

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Synthesis, crystal structure and characterization of iron pyroborate ($Fe_2B_2O_5$) single crystals

Tetsuya Kawano, Haruhiko Morito, Takahiro Yamada, Takeyoshi Onuma, Shigefusa F. Chichibu, Hisanori Yamane *

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Received 28 February 2009 Received in revised form 16 April 2009 Accepted 6 May 2009 Available online 14 May 2009

Keywords: Iron pyroborate Synthesis Crystal structure Single-crystal X-ray diffraction Light transmittance Diffuse reflectance Cathodoluminescence Magnetic susceptibility

1. Introduction

In crystal structures of crystalline borates, BO₃ triangles and BO₄ tetrahedra can be connected with each other via common corners to form B_xO_y groups. The various crystal structures of borates are derived from the large diversity in the linkage of boron with oxygen [1,2]. The main-group metal borates have been studied as nonlinear optical crystals (β -BaB₂O₄, LiB₃O₅, Sr₂Be₂B₂O₇) and phosphors (SrB₄O₇, BaLiB₅O₁₀, Ba₂Mg(BO₃)₂) because of their transparency in a wide range from ultraviolet (UV) to infrared (IR) [3,4]. The magnetic and electrochemical properties of some transition metal borates such as MBO₃ (M = V, Cr, Fe) [5] and $M_3B_2O_6$ (M = Co, Ni, Cu) [6] have been studied.

In the Fe–B–O system, Fe(III) borates (FeBO₃ [7], Fe₃BO₆ [8]), Fe(II, III) borates (Fe₂BO₄ [9], Fe₃BO₅ [10]), and Fe(II) borates (α -FeB₂O₄ [11], FeB₄O₇ [12,13], Fe₂B₂O₅ [14]) have been studied. Fe(III) and Fe(II, III) borates are attracted due to their magnetic properties [15–18]. The physical properties of Fe(II) borates have not been reported, while a quartenary Fe(II) borate LiFe²⁺BO₃ [19] was studied on its electrochemical properties as a cathode material with low cost and environmentally benign as well as LiFe²⁺PO₄ [20] and Li₂Fe²⁺SiO₄ [21].

ABSTRACT

Single crystals of iron(II) pyroborate, Fe₂B₂O₅, were prepared at 1000–1050 °C under an argon atmosphere. The crystals were transparent, yellowish in color and needle-like or columnar. The crystal structure of Fe₂B₂O₅ was analyzed by single-crystal X-ray diffraction. Refined triclinic unit cell parameters were a = 3.2388(2), b = 6.1684(5), c = 9.3866(8)Å, $\alpha = 104.613(3)^\circ$, $\beta = 90.799(2)^\circ$ and $\gamma = 91.731(2)^\circ$. The final reliability factors of refinement were R1 = 0.020 and wR2 = 0.059 [$I > 2\sigma(I)$]. Transmittance over 50% in the visible light region from 500 to 750 nm was observed for a single crystal of Fe₂B₂O₅ with a thickness of about 0.3 mm. The light absorption edge estimated from a diffuse reflectance spectrum was at around 350 nm (3.6 eV). Magnetic susceptibility was measured for single crystals at 4–300 K. Fe₂B₂O₅ showed antiferromagnetic behavior below the Néel temperature, $T_N \approx 70$ K, and the Weiss temperature was $T_W = 36$ K. The effective magnetic moment of Fe was $5.3\mu_B$.

© 2009 Elsevier Inc. All rights reserved.

Fe₂B₂O₅ has been synthesized by Block et al. with Mg₂B₂O₅ and $Mn_2B_2O_5$ [14]. They analyzed the crystal structure of $Mg_2B_2O_5$ and reported that $M_2B_2O_5$ (M = Mn, Fe) were isostructural with a triclinic phase of Mg₂B₂O₅ (2:2 Δ type [1,2]) The unit cell parameters of Fe₂B₂O₅ were shown to be a = 3.25, b = 6.18, c = 9.40 Å, $\alpha = 104.17^{\circ}$, $\beta = 90.62^{\circ}$ and $\gamma = 91.48^{\circ}$, but the crystal structural parameters such as atomic coordinates, displacement parameters and so on were not presented in their paper, nor were details of Fe₂B₂O₅ single-crystal preparation. Magnesium pyroborate Mg₂B₂O₅, mineral name 'suanite', crystallizes in three crystallographic forms, a triclinic phase [14,22], a monoclinic phase [23] and a monoclinic phase with a doubled unit cell volume [24]. Triclinic pyroborates of other elements: $M_2B_2O_5$ (*M* = Mg [14,22], Mn [14,25,26], Fe [14], Co [14,27,28], Cd [29,30]), $MMnB_2O_5$ (M = Mg, Co) [31] and $M_{1.5}Zn_{0.5}B_2O_5$ (M = Co, Ni) [32] have also been reported. Fernandes et al. elaborated the crystal structure and magnetism of Mn₂B₂O₅ and MgMnB₂O₅ and showed antiferromagnetic behavior of Mn₂B₂O₅ with spin-flop-like transition [25]. Mn^{2+} doped $Cd_2B_2O_5$ is red phosphor utilized for fluorescent lamps [33].

In our preliminary study on borate compounds, we noticed that single crystals of $Fe_2B_2O_5$ are almost colorless and transparent, but optical and magnetic and properties of $Fe_2B_2O_5$ have not been investigated. In the present study, we synthesized single crystals of $Fe_2B_2O_5$ and analyzed the crystal structure by single-crystal X-ray diffraction (XRD). The optical and magnetic properties of $Fe_2B_2O_5$ were also characterized.

^{*} Corresponding author. Fax: +81 22 217 5813.

E-mail address: yamane@tagen.tohoku.ac.jp (H. Yamane).

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.05.009

2. Experimental section

Starting powders of α -Fe (99.9%, Wako Pure Chemical Ind.), Fe₂O₃ (99.9%, Wako Pure Chemical Ind.) and B₂O₃ (99.99%, Kojundo Chemical Laboratory) were weighed with the predetermined molar ratios shown in Table 1. As-received B₂O₃ was stored and weighed in an argon-filled glove box due to its highly hygroscopic nature. The powders were mixed with approximately 5 ml of ethanol (99.5%, Wako Pure Chemical Ind.) in an agate mortar and pressed into pellets. The pellets were placed in a platinum (Pt) crucible and put into a quartz glass tube. The samples were heated at 1000–1050 °C for 3 h with a tubular furnace in an argon (99.9999%, Tokyo Koatsu Yamazaki) atmosphere. After heating, the samples were cooled to 900–950 °C at a cooling rate of 10 K h⁻¹ and then cooled to room temperature by turning off the power of furnace.

The surface of the obtained single crystals was observed with a scanning electron microscope (SEM, Philips, ESEM XL-30) and elemental analysis of the crystals was carried out with an energydispersive X-ray (EDX) analyzer (EDAX, NEW XL-30) attached to the SEM.

The samples were powdered and characterized at room temperature by X-ray diffraction using $CuK\alpha$ radiation with a graphite monochromator mounted on a powder diffractometer (Rigaku, RINT2000).

X-ray diffraction data of a single crystal were collected using MoK α radiation with a graphite monochromator and an imaging plate on a single-crystal X-ray diffractometer (Rigaku, R-AXIS RAPID-II). Diffraction data collection and unit cell refinement were performed by the program PROCESS-AUTO [34]. Absorption correction was performed by the program NUMABS [35].

The crystal structure of $Fe_2B_2O_5$ was refined with the program SHELXL-97 [36] and WinGX software package [37] using the structural parameters of $Co_2B_2O_5$ reported by Rowsell et al. [28] as an initial structure model. Crystal structures were illustrated with the program VESTA [38].

Light transmittance of an $Fe_2B_2O_5$ single crystal 0.2–0.3 mm in thickness was measured with a color filter spectral inspection system (Otsuka Electronics, LCF-2100 M) in the region of 380–780 nm. Diffuse reflectance of the powdered sample was measured with a UV–Vis spectrophotometer (Hitachi, U-3000) and a 150 mm integrating sphere. Powdered BaSO₄ (Hitachi, white plate) was used as the reflectance standard from 200 to 900 nm. Cathodoluminescence (CL) measurement was carried out for a single crystal of $Fe_2B_2O_5$ at 12 and 300 K.

The temperature dependence of the magnetic susceptibility was measured using a Quantum Design SQUID magnetometer under zero field cooling (ZFC) conditions at an applied field of 10 kOe and 4–300 K.

3. Results and discussion

Table 1

Table 1 lists the mixing molar ratios of the samples prepared in the present study and the obtained crystalline phases. All three

Mixing molar ratios of the samples, heating temperatures and compounds in the Fe–B–O system.

Sample	e Mixing molar ratio			Temperature (°C)	Compounds	
	α-Fe	$\frac{1}{2}Fe_2O_3$	$\frac{1}{2}B_2O_3$			
A	45	0	55	1050	Fe₂B₂O₅ , α-Fe, B ₂ O ₃	
В	2	4	6	1050	Fe ₂ B ₂ O ₅ , Fe ₃ BO ₅	
С	4	4	15	1000	Fe₂B₂O₅ , B ₂ O ₃	

starting mixtures melted by heating at 1000–1050 °C and single crystals of $Fe_2B_2O_5$ were formed at the bottom of the Pt crucible. The single crystals were transparent and yellowish, and had needle-like or columnar shapes. The crystals were easily cleaved along the plane perpendicular to their elongation direction. Fig. 1 shows an optical micrograph of a cleaved crystal with a thickness of 0.2–0.3 mm.

Sample A prepared with α -Fe and B_2O_3 consisted of Fe₂B₂O₅, α -Fe and B_2O_3 , and contained a dispersion of fine α -Fe particles around 50 μ m in size. These fine α -Fe particles could not be completely separated from Fe₂B₂O₅ crystal grains by magnetic separation and washing with acid solutions. Thus, Fe₂O₃ was added to the starting materials as a pro-oxidant for α -Fe in samples B and C.

Fe₂B₂O₅ would be formed by the following reaction:

 $2Fe + 2Fe_2O_3 + 3B_2O_3 = 3Fe_2B_2O_5$

Yellow (Fe₂B₂O₅) and black (Fe₃BO₅) crystals were formed from the mixture with a molar ratio of Fe/B = 1.0 in the starting materials (sample B). Fe₃BO₅ was probably formed by evaporation of B₂O₃ during heating and the molar ratio Fe/B in the starting mixture became larger than 1.0. After the synthesis, an H₃BO₃ deposit, which was probably derived from the condensed B₂O₃, was observed in the cooler part of the quartz glass tube.

Excess B_2O_3 and α -Fe were added to the starting mixtures of sample C in order to maintain excess B_2O_3 and reduction conditions, since Fe_3BO_5 ($Fe_2^{2+}Fe^{3+}O_2BO_3$) includes Fe(III) ions. Most XRD peaks from the powdered sample C were indexed with the triclinic unit cell parameters of $Fe_3B_2O_5$. Preferred orientations of the ($\overline{1}02$) and ($01\overline{1}$) planes were observed. Small XRD peaks of B_2O_3 were also seen, but no peaks from α -Fe and Fe_3BO_5 were detected.

SEM observation and EDX analysis of $Fe_2B_2O_5$ single crystals were performed without any conductive coating at an electron accelerating voltage of 10–20 kV. Only oxygen and iron elements were detected by EDX spectroscopy.

The crystal data and results of structure refinement for Fe₂B₂O₅ are summarized in Table 2. Fe₂B₂O₅ crystallizes in a triclinic unit cell (*P*I (No. 2)) and was refined with good final *R*-indices of *R*1 = 0.020 and *wR*2 = 0.059 [*I* > $2\sigma(I)$]. Refined unit cell parameters (*a* = 3.2388(2), *b* = 6.1684(5), *c* = 9.3866(8) Å, *α* = 104.613(3)°, *β* = 90.799(2)° and *γ* = 91.731(2)°) were consistent with those reported by Block et al. (*a* = 3.25, *b* = 6.18, *c* = 9.40 Å, *α* = 104.17°, *β* = 90.62° and *γ* = 91.48°).

Table 3 lists the refined positional parameters, and equivalent isotropic displacement parameters. Fe and B atoms have two sites, and O atoms have five sites. All these sites are at general 2*i*

Fig. 1. Optical microscope photograph of a single crystal of Fe₂B₂O₅.

Table 2

Crystal data and structure refinement for Fe₂B₂O₅.

Chemical formula	$Fe_2B_2O_5$
Formula weight, M_r (g mol ⁻¹)	213.32
Temperature, T (°C)	25(2)
Crystal system, space group	Triclinic, P1 (No. 2)
Unit cell dimensions	$a = 3.2388(2)$ Å, $\alpha = 104.613(3)^{\circ}$
	$b = 6.1684(5)$ Å, $\beta = 90.799(2)^{\circ}$
	$c = 9.3866(8)$ Å, $\gamma = 91.731(2)^{\circ}$
Unit cell volume, V (Å ³)	181.33(2)
Ζ	2
Calculated density, $D_{cal}(Mg m^{-3})$	3.907
Radiation wavelength (Mo $K\alpha$), λ (Å)	0.71073
Absorption coefficient, μ (mm ⁻¹)	7.89
F ₀₀₀	204
Crystal size (mm ³)	$0.07 \times 0.06 \times 0.06$
2 heta Range for data collection	6.8°-54.9°
Limiting indices	$-4 \le h \le 4, -8 \le k \le 8, -12 \le l \le 12$
Reflections collected/unique	$1797/820 [R_{int} = 0.023]$
Absorption correction	Numerical
Data/restraints/parameters	820/0/82
Goodness-of-fit on F ² , S	1.24
Final <i>R</i> indices $[I > 2\sigma(I)]$	
R1, wR2	0.020, 0.059
R indices (all data) R1, wR2	0.029, 0.042
Largest diff. peak and hole, Δho (e Å $^{-3}$)	0.71 and -0.65

 $R1 = \sum ||F_o| - |F_c|| / \sum |F_o|. \ wR2 = [\sum w \cdot (F_o^2 - F_c^2)^2 / \sum (w \cdot F_o^2)^2]^{1/2}, \ w = 1/[\sigma^2 \cdot (F_o^2) + (0.0118P)^2 + 0.2267P], \ where F_o is the observed structure factor, <math>F_c$ is the calculated structure factor, σ is the standard deviation of F_c^2 , and $P = (F_o^2 + 2F_c^2)/3. \ S = [\sum w \cdot (F_o^2 - F_c^2)^2 / (n - p)]^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined.

Table 3 Atomic coordinates and equivalent isotropic displacement parameter, $U_{eq}(\dot{A}^2)$, for Fe₂B₂O₅.

Atom	x	у	Z	U _{eq} ^a
Fe1	0.73942(16)	0.20967(9)	0.36226(6)	0.00878(15)
Fe2	0.23610(16)	0.36376(9)	0.10085(6)	0.00766(15)
01	0.2628(8)	0.6917(4)	0.0557(3)	0.0081(5)
02	0.2224(8)	0.0870(5)	0.1813(3)	0.0111(5)
03	0.7405(8)	0.4740(4)	0.2600(3)	0.0091(5)
04	0.5545(8)	0.8568(4)	0.2980(3)	0.0120(6)
05	0.7668(8)	0.7248(5)	0.5001(3)	0.0107(5)
B1	0.6986(12)	0.6782(7)	0.3539(4)	0.0073(8)
B2	0.3368(12)	0.8756(7)	0.1700(4)	0.0069(8)

All atoms are at 2i Wyckoff position with occupancy of 1.0.

^a $U_{eq} = (\sum_i \sum_j U_{ij} a_i^* a_i \cdot a_j).$

Wyckoff position. Table 4 summarizes the bond lengths, bond angles, bond valence sums (BVSs) [39,40] and Baur's distortion indices [41] for Fe₂B₂O₅. The Fe–O distances (2.008(3)–2.336(3)Å) and B-O distances (1.343(5)-1.422(5)Å) almost agreed with those of other isostructural pyroborates mentioned above [14,22, 26,28,30–32]. The BVSs of B at the triangular centers (B1: 3.00, B2: 2.98) and Fe at the octahedral sites (Fe1: 1.95, Fe2: 1.98) suggest that B and Fe are trivalent and divalent, respectively. Although both FeO₆ octahedra are distorted, the distortion index of Fe1O₆ (0.050) situated at the end of the ribbon is about two times larger than that of $Fe2O_6$ (0.021). The distortion indices of other isotypic pyroborates: $M_2B_2O_5$ (M = Mg [22], Mn [26], Co [28], Cd [30]) were 0.042-0.048 for M106 and 0.016-0.020 for M206. The octahedra of substituted compounds ($MMnB_2O_5$ (M = Mg, Co) $[31], M_{1.5}Zn_{0.5}B_2O_5$ (*M* = Co, Ni) [32]) are largely distorted (*M*1O₆: $0.050-0.056, M2O_6: 0.020-0.025).$

The coordination environments for Fe and B atoms are drawn with displacement ellipsoids in Fig. 2. B1 and B2 atoms are coordinated by three O atoms, and planar B1O₃ and B2O₃ triangles

Table 4

Selected bond lengths (Å), bond angles (°), bond valence sums (BVS), and distortion indices for $Fe_2B_2O_5$.

Bond length (A)							
Fe1-05'	2.008(3)	Fe1-05"	2.087(3)	Fe1-03	2.091(3)		
Fe1–O4 ⁱⁱⁱ	2.170(3)	Fe1–O2 ^{iv}	2.324(3)	Fe1-02	2.336(3)		
Fe2-02	2.033(3)	Fe2-01 ^v	2.129(3)	Fe2-01	2.169(3)		
Fe2-03	2.171(3)	Fe2-01 ^{vi}	2.181(3)	Fe2–O3 ^{vii}	2.211(3)		
B1-05	1.343(5)	B1-03	1.355(5)	B1-04	1.422(5)		
B2–O2 ^{viii}	1.345(5)	B2-01	1.363(5)	B2-04	1.416(5)		
Fe1−Fe1 ^{iv}	3.2388(8)	Fe1–Fe2	3.2773(6)				
Fe2–Fe2 ^{iv}	3.2388(8)	Fe2–Fe2 ^{vi}	3.2945(6)	Fe2-Fe2 ^v	3.2293(6)		
B1-B2	2.632(4)						
Bond angle (°)							
03-B1-05	124.7(4)	03-B1-04	119.2(3)	04-B1-05	116.2(3)		
01-B2-02 ^{viii}	128.0(3)	01-B2-04	120.4(3)	02 ^{viii} -B2-O4	111.6(3)		
B1-04-B2	136.0(3)				. ,		
Fe1–Fe2–Fe2 ^{iv}	60.28(4)	Fe2-Fe2 ^{iv} -Fe1	60.44(4)	Fe2 ^{iv} -Fe1-Fe2	59.28(4)		
Fe2-Fe2 ^{iv} -Fe2 ^{vi}	61.24(4)	Fe2 ^{iv} -Fe2 ^{vi} -Fe2	59.52(4)	Fe2vi-Fe2-Fe2iv	59.24(4)		
Bond valence sum ^a							
Fe1(VI)	1.95	Fe2(VI)	1.98				
B1(III)	3.00	B2(III)	2.98				
Distortion index ^b							
Fe10.	0.050	Fe20.	0.021				
10106	0.050	1.6206	0.021				

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z; (vii) x-1, y, z; (viii) x, y+1, z.

^a Bond valence sum: $V_j \equiv \sum_i \exp[(l_0 - l_{ij})/B]$, where l_0 is the bond valence parameter (BVP) presented by Brese and O'Keefe for B–O and Fe–O, l_{ij} is the distance between *i* and *j* atoms, and *B* is a constant value of 0.37 Å. BVP values of B and Fe ions are $l_0(B^{3+}) = 1.371$ Å and $l_0(Fe^{2+}) = 1.734$ Å, respectively.

^b Distortion index: $D \equiv 1/n \sum_i [(l_i - l_{av})/l_{av}]$, where l_i is the distance from the central atom to the *n*th coordinating atom, and l_{av} is the average bond lengths.

Fig. 2. Displacement ellipsoid plot of the iron and boron coordination environments within $Fe_2B_2O_5$ at 80% probability level. Symmetry labels correspond to those defined in Table 4.

are connected to form a B_2O_5 group by sharing with an O4 atom. Fe1 and Fe2 are in distorted oxygen octahedra.

As shown in Fig. 3(a), four FeO₆ octahedra are linked by edgesharing to form an [Fe₄O₁₈] unit. The [Fe₄O₁₈] units are connected along the *a*-axis, and form a ribbon-like substructure, where four Fe atoms are arranged in the order of Fe1–Fe2–Fe2–Fe1 (Fig. 3(b)). The ribbons are parallel to the *a*-axis, and five O atoms of the B₂O₅ group belong to three adjacent ribbons. Therefore, Fe₂B₂O₅ has a quasi-one-dimensional structure. As shown by the dashed lines in Fig. 3(b), Fe atoms form a network which is almost hexagonal.

A light transmission spectrum for the single crystal of $Fe_2B_2O_5$ with a thickness of about 0.3 mm (Fig. 1) is shown in Fig. 4. The values of the transmittance were more than 40% in the region of 380–780 nm, which indicated that it has transparency in the visible light region. A diffuse reflection spectrum for the powdered sample is shown in Fig. 5. The values of reflectance of

Fig. 3. (a) Crystal structure of $Fe_2B_2O_5$ viewed in the [100] direction using Fe-centered oxygen octahedra. Light and dark octahedra are $Fe1O_6$ and $Fe2O_6$, respectively. (b) View of a ribbon substructure drawn by using Fe-centered oxygen octahedra with an almost hexagonal arrangement of the Fe atoms.

Fig. 4. Light transmission spectrum collected from the single crystal of $\rm Fe_2B_2O_5$ shown in Fig. 1.

 $Fe_2B_2O_5$ (R_{smp}) were 35% in the region between 500 and 900 nm. The lights less than 500 nm in wavelength were absorbed, and the absorption edge was at 300 nm. The optical bandgap of $Fe_2B_2O_5$ estimated by analytical calculation using the Kubelka–Munk function [42,43] was around 3.6 eV.

The CL spectra of $Fe_2B_2O_5$ measured under excitation by an electron beam accelerated at 3.5 kV with $1.0 \times 10^{-2} \text{ A cm}^{-2}$ in current density are shown in Fig. 6. A broad peak of 3.3-5.1 eV and a strong peak of 5.799 eV were observed in the spectrum at 300 K. The broad emission peak would correspond to the optical bandgap of 3.6 eV estimated from the diffuse reflection spectrum. Strong, sharp peaks were observed at 5.505 and 5.594 eV in the spectrum measured at 12 K. Other small sharp peaks were detected at 3.321, 3.369 and 4.144 eV. Further investigations such as computational studies by using LDA+U and GGA+U methods would conduce to interpretation of the band gap and UV emission peaks based on an electronic structure of $Fe_2B_2O_5$.

Temperature dependence of the magnetic and inverse susceptibility shown in Fig. 7 indicates that Fe₂B₂O₅ is an antiferromagnet with a Néel temperature of $T_N \approx 70$ K. A broad peak observed at around 70 K in the χ -*T* curve of Fe₂B₂O₅ probably indicates low-dimensional interactions derived from the ribbon-like substructures similar to those studied by Fernandes et al. for

Fig. 5. Diffuse reflection spectrum of $Fe_2B_2O_5$ (R_{smp}).

Fig. 6. Cathodoluminescence spectra of $Fe_2B_2O_5$ at $12\,K$ (solid line) and 300 K (dotted line).

 $Mn_2B_2O_5$ [25]. Sarrat et al. proposed spin configuration of $Mn_2B_2O_5$ based on the electron density distribution of $Mn_2B_2O_5$ by the maximum entropy analysis of single-crystal XRD data [26]. The distances between the Mn atoms of the adjacent ribbons are

Fig. 7. Temperature dependence of the magnetic (circle) and inverse susceptibility (square) measured for $Fe_2B_2O_5$ in zero field cooling under an applied field of 10 kOe.

4.526–6.272 Å and electron density distributions were indicated in the regions between the ribbons. According to their model, all coplanar ribbons of $Mn_2B_2O_5$ were ferromagnetic, and antiferromagnetic behavior is derived from antiparallel magnetic orientation between adjacent ribbons. The distances from Fe1 to Fe1 and from Fe2 to Fe2 in the adjacent ribbons of Fe₂B₂O₅ are 4.3620(6) and 4.7867(7) Å, respectively. The Fe1–Fe2 and Fe2–Fe2 distances in the ribbon are 3.2587(5) and 3.2293(6)–3.2388(8) Å, respectively (Table 4). Therefore, intraplanar interactions of Fe atoms should be stronger than interplanar interactions.

The positive Weiss temperature $T_W = +36$ K suggested the existence of ferromagnetic spin–spin interactions. Antiferromagnetic Mn₂B₂O₅, which is a manganese analog of Fe₂B₂O₅, has a negative Weiss temperature of $T_W = -27.8$ K [25]. A similar relation has been reported for the ilmenites M^{2+} TiO₃ (M = Mn and Fe), having a layer magnetic structure. The Weiss temperatures of FeTiO₃ and MnTiO₃ were positive ($T_W = +59$ K) and negative ($T_W = -219$ K), respectively [44]. The intralayer ferromagnetic interactions of iron compounds are presumably higher than those of manganese compounds.

The Curie constant was $C = 3.517 \text{ emu K mol-Fe}^{-1} \text{ Oe}^{-1}$ when the Curie–Weiss law was set at $\chi^{-1} = 2C/(T+T_W)$. The calculated effective magnetic moment of Fe, $P_{\text{eff}} = 5.3\mu_{\text{B}}$, well matches Stoner's empirical value $(5.25-5.53\mu_{\text{B}})$ [45], suggesting that Fe is divalent and in a high-spin state $(t_{2g}^4 e_g^2)$ in Fe₂B₂O₅.

4. Conclusion

The crystal structure of Fe(II) pyroborate, Fe₂B₂O₅, with triclinic and space group $P\bar{1}$ (No. 2) was refined by single-crystal X-ray diffraction. The single crystals of Fe₂B₂O₅ were transparent with more than 40% transmittance in the visible light region of 380–780 nm. The optical bandgap estimated from the diffuse reflectance was 3.6 eV. Also, broad emission in the range from 3.3 to 5.1 eV and strong emission at around 5.8 eV were observed by cathodoluminescence spectroscopy. Temperature dependence of the magnetic susceptibility showed the Néel temperature of Fe₂B₂O₅ to be 70 K. The divalent and high-spin state of Fe in Fe₂B₂O₅ was shown by the effective magnetic moment of $5.3\mu_{\rm B}$.

Supporting information

The crystallographic information file, a table of refined anisotropic displacement parameters (U_{ii}) and a list of structure

factors of $Fe_2B_2O_5$ would be available as supplementary data at doi:10.1016/j.jssc.2009.05.009.

Acknowledgments

This work was supported in part by the Global COE Program "Materials Integration, Tohoku University", MEXT, Japan. The authors would like to thank Mr. Toshihiro Takada (Otsuka Electronics Co., Ltd., Japan) for the transmission measurement and Assoc. Prof. Asaya Fujita and Dr. Shun Fujieda (Tohoku University) for use of the SQUID equipment.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2009.05.009.

References

- [1] P.C. Burns, J.D. Grice, F.C. Hawthorne, Can. Mineral. 33 (1995) 1131-1151.
- [2] G. Heller, Top. Curr. Chem. 131 (1986) 39-98.
- [3] P. Becker, Adv. Mater. 10 (1998) 979-992.
- [4] D.A. Keszler, Curr. Opin. Solid State Mater. Sci. 4 (1999) 155-162.
- [5] A.D. Balaev, N.V. Kazak, S.G. Ovchinnikov, V.V. Rudenko, L.V. Kirensky, N.B. Ivanova, Acta Phys. Pol. 34 (2003) 757-760.
- [6] A. Débart, B. Revel, L. Dupont, L. Montagne, J.-B. Leriche, M. Touboul, J.-M. Tarascon, Chem. Mater. 15 (2003) 3683–3691.
- [7] R. Diehl, Solid State Commun. 17 (1975) 743-745.
- [8] R. Diehl, G. Brandt, Acta Cryst. B 31 (1975) 1662-1665.
- [9] J.P. Attfield, J.F. Clarke, D.A. Perkins, Physica B 180-181 (1992) 581-584.
- [10] J.S. Swinnea, H. Steinfink, Am. Mineral. 68 (1983) 827-832.
 - [11] J.S. Knyrima, H. Huppertz, J. Solid State Chem. 181 (2008) 2092-2098.
- [12] T.A. Kravchuk, Y.D. Lazebnik, Russ. J. Inorg. Chem. 12 (1967) 21-24.
- [13] I.M. Rumanova, E.A. Genkina, N.V. Belov, Izv. Akad. Nauk. Latv. SSR Ser. Khim. 5 (1981) 571–579.
 [14] S. Block, G. Burley, A. Perloff, R.D. Mason Jr., J. Res. Natl. Bur. Stand. 62 (1959)
- 95–100.
- [15] I.V. Pleshakov, V.V. Matveev, J. Phys. Condens. Matter 16 (2004) 1725-1731.
- [16] C. Voigt, W. Roos, J. Phys. C Solid State Phys. 9 (1976) L469-L472.
- [17] A.P. Douvalis, V. Papaefthymiou, A. Moukarika, T. Bakas, Hyperfine Interact 126 (2000) 319–327.
- [18] M.A. Continentino, A.M. Pedreira, R.B. Guimarães, M. Mir, J.C. Fernandes, R.S. Freitas, L. Ghivelder, Phys. Rev. B 64 (2001) 014406-1-014406-6.
- [19] Y.Z. Dong, Y.M. Zhao, Z.D. Shi, X.N. An, P. Fu, L. Chen, Electrochim. Acta 53 (2008) 2339–2345.
- [20] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224-A229.
- [21] A. Nytén, A. Abouimrane, M. Armand, T. Gustafssona, J.O. Thomas, Electrochem. Commun. 7 (2005) 156–160.
- [22] G.-C. Guo, W.-D. Cheng, J.-T. Chen, H.-H. Zhuang, J.-S. Huang, Q.-E. Zhang, Acta Cryst, C 51 (1995) 351–353.
- [23] Y. Takéuchi, Acta Cryst. 5 (1952) 574-581.
- [24] G.-C. Guo, W.-D. Cheng, J.-T. Chen, H.-H. Zhuang, J.-S. Huang, Q.-E. Zhang, Acta Cryst. C 51 (1995) 2469–2471.
- [25] J.C. Fernandes, F.S. Sarrat, R.B. Guimarães, R.S. Freitas, M.A. Continentino, A.C. Doriguetto, Y.P. Mascarenhas, J. Ellena, E.E. Castellano, J.-L. Tholence, J. Dumas, L. Ghivelder, Phys. Rev. B 67 (2003) 104413-1–104413-7.
- [26] F.S. Sarrat, R.B. Guimarães, M.A. Continentino, J.C. Fernandes, A.C. Doriguetto, J. Ellena, Phys. Rev. B 71 (2005) 224413-1-224413-6.
- [27] S.V. Berger, Acta Chem. Scand. 4 (1950) 1054-1065.
- [28] J.L.C. Rowsell, N.J. Taylor, L.F. Nazar, J. Solid State Chem. 174 (2003) 189-197.
- [29] E.V. Sokolova, M.A. Simonov, N.V. Belov, Dokl. Akad. Nauk. SSSR 247 (1979) 603-606;
- E.V. Sokolova, M.A. Simonov, N.V. Belov, Sov. Phys. Dokl. 24 (1979) 524–526.
 M. Weil, Acta Cryst. E 59 (2003) i95–i97.
- [31] A. Utzolino, K. Bluhm, Z. Naturforsch. B 51 (1996) 912-916.
- [32] S. Busche, K. Bluhm, Z. Naturforsch. B 50 (1995) 1445-1449.
- [33] S. Kamiya, H. Mizuno, in: W. Yen, S. Shionoya, H. Yamamoto (Eds.), Phosphor Handbook, second ed., CRC Press, Boca Raton, FL, 2006, pp. 487–488.
- [34] PROCESS-AUTO, Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan. Rigaku/MSC & Rigaku Corporation, 2005.
- [35] T. Higashi, NUMABS—Numerical Absorption Correction, Rigaku Corporation, Tokyo, 1999.
- [36] G.M. Sheldrick, Acta Cryst. A 64 (2008) 112-122.
- [37] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837-838.

- [38] K. Momma, F. Izumi, J. Appl. Cryst. 41 (2008) 653-658.
- [39] I.D. Brown, D. Altermat, Acta Cryst. B 41 (1985) 244–247.
 [40] N.E. Brese, M. O'Keeffe, Acta Cryst. B 47 (1991) 192–197.
 [41] W.H. Baur, Acta Cryst. B 30 (1974) 1195–1215.
 [42] P. Kubelka, F. Munk, Z. Tech. Phys. 12 (1931) 593–601.

- [43] S. Nara, S. Ibuki, in: W. Yen, S. Shionoya, H. Yamamoto (Eds.), Phosphor Handbook, second ed., CRC Press, Boca Raton, FL, 2006, pp. 28–32.
 [44] J.J. Stickler, S. Kern, A. Wold, G.S. Heller, Phys. Rev. 164 (1967) 765–767.
 [45] E.C. Stoner, Magnetism and Matter, Methuen, London, 1934, p. 312.